Posts Tagged "ochem"

Formation of Enols and Enolates

Posted on April 3rd, 2018

One question that comes up in organic chemistry often is “what is an enol or an enolate and how is it formed?”  These types of concepts are frequently covered quickly in class or not at all, but are very important for future reaction mechanisms.  We at Study Orgo have the combined experience of over 15 years of tutoring and teaching organic chemistry concepts to struggling students.  We have developed clear descriptions of reaction mechanisms and organic chemistry concepts to aid students in their studies.  Sign up today for access to over 180 reactions mechanisms and reviews!

The alpha carbon of a carbonyl, which is present in carboxylic acids, esters, ketones and aldehydes, are acidic which means the proton can be removed using a base.  In neutral or acidic conditions, this means the lone pairs on the C=O position can act as a weak nucleophile.

If the carbonyl oxygen can attack the alpha carbon C-H bond, it will abstract the hydrogen and perform a Keto-Enol tautomerization reaction that will lead to the resonance version of the carbonyl, which is the Enol (alkENE + alcohOL)

Enols – rearranging the pi bond and atoms of a carbonyl compound to an Enol

Catalyist: Acidic or Neutral Conditions to stabilize OH formation

Enols tautomers are generally unstable, preferring the “Keto” version 90-99% of the time versus the “Enol” version.  However, a catalytic amount of presence is sometimes enough to drive reactions forward if the mechanism requires the enol tautomer of the compound.

However, in some cases such as a beta diketone, shown below, the combined dipoles of two carbonyls makes the alpha carbon very acidic, meaning enol formation is very favorable.  In this case, it is 70-90% enol in solution.

 

Enolates – Deprotonating the alpha carbon and tautomerizing to the oxyanion

Catalyist: Strong Base to deprotonate the alpha carbon.

Like an Sn2 mechanism, a strong enough base will react with the acidic proton on the alpha carbon and deprotonate.  The electron density between the C-H bond will shift to make a new C=C bond, while the C=O electrons will be placed on the oxygen, creating and alkENE + alcohOL anion “ATE”) with a strong base to produce a stable carbanion.  The stability is due to the tautomerized structure that can be produced by placing the negative charge on the oxygen.

 

Enolates are generally forward reactions depending on the strength of the base.  How strong the base required depends on the pKa of the alpha C-H bond.  In the case of ketones, a strong base like LDA is required.  However, for beta dikeontes, a mild base like NaOH is enough to generate the enolate.

 

Formation of Enols and Enolates are an important source of carbon nucleophiles to make new C-C bonds in future reactions.

Sign up with StudyOrgo today to get access over 180 chemical to reactions with detailed reaction mechanisms, explanations, tips and tricks to each mechanism.

How do you to tell when a hydrogen bond will occur?

Posted on March 7th, 2018

Hydrogen bonding is important for describing the driving force of reactions in organic chemistry and a very important concept for explaining the biochemistry of catalytic reactions that occur using protein as enzymes in biological systems.  In this post, we will discuss the rules and examples of hydrogen bond formation.  We at StudyOrgo have extensive experience instructing principles and reaction mechanisms frequently covered in Organic Chemistry. Sign up today for clear, detailed explanations of over 180 Orgo Chem reactions and reviews on conceptual topics!

Physical properties of molecules such as boiling and melting point, solubility and reactivity, are affected by the functional groups that make up the molecule. This can be explained by analyzing the type of intermolecular forces that are experienced between molecules.  Because these forces are not covalent, intermolecular forces are determined by the intensity of electrostatic forces which is what makes up each type of intermolecular force. As a review, the types of intermolecular forces are;

  • Van der Waals (London dispersion forces) – Weak, temporary dipole formed between hydrophobic C-H and C-C bonds.
  • Dipole-Dipole Interactions: – Strong, permanent dipole moments formed between atoms of functional groups containing bonds such as C=O, C=N, C-O, C-N, N-H and O-H bonds. The delta(-) side of one dipole is attracted to the delta(+) side of another molecule, forming a non-covalent electrostatic attraction.
  • Hydrogen Bonding: Sharing sharing of a hydrogen atom covalently attached to an electronegative element (typically O-H and N-H groups) between a lone pair of electrons on another electronegative element.

Two terms about hydrogen bonding that are key are;

  • The electronegative atom with the lone pair electrons is called the Hydrogen Bond Acceptor
  • The electronegative atom bonded to the hydrogen is called the Hydrogen Bond Donor
  • The Hydrogen Bond Donor must be aligned 180 degrees to the Hydrogen Bond Donor!

The more intermolecular forces the molecule has, the more energy will be required to disrupt these bonds when melting or boiling compounds, thus raising the observed temperatures from expected relative to their mass.  In addition, hydrogen bonds require polar bonds in the molecule and H-Bond Donor proton involved is protic (a donatable hydrogen atom). These are two terms that you will learn in the Sn1 mechanism.

Let’s look at ethanol as an example.  The hydrogen bonding occurs between the proton of one alcohol group and the oxygen lone pair electrons on another alcohol group.  This is a strong intermolecular force that holds the molecule in a complex 3D shape and makes it easier in reactions to attack the carbon connected to the O-H bond due to inductive effects, or the pulling of electrons away from the carbon.  Water is an extreme example, where all the atoms in the molecule participate in hydrogen bonding.  The oxygen lone pairs will accept a hydrogen from a neighboring molecule O-H.  Finally, acetic acid is another example.  Remember, that the H-Bond Acceptor can be any lone pairs, including those of C=O bonds.

 

These concepts are really important to understanding the more complex topics to come. With a membership to StudyOrgo, you will get even more tips and tricks on organic chemistry topics and detailed mechanisms with explanations.  Today’s blog is a preview of the detailed topics and materials available.